Możliwości wykorzystania i zastosowania morszczynu (Fucus) w rolnictwie
DOI:
https://doi.org/10.15584/pjsd.2024.28.1.15Słowa kluczowe:
ekstrakty, biostymulatory, dodatki do pasz, Fucus vesiculosus, F. serratus, F. spiralis, retardacjaAbstrakt
Przedstawiciele rodzaju Fucus od wieków mają zastosowanie jako źródło pożywienia dla ludzi i zwierząt, w rolnictwie oraz jako środek leczniczy w medycynie ludowej. Charakteryzują się wysokimi wartościami odżywczymi, stanowiąc dobre źródło błonnika pokarmowego i minerałów, zwłaszcza jodu. Fucus vesiculosus – najczęściej badany – zawiera znaczne ilości specyficznych związków fenolowych (florotaniny PT), barwnika fukoksantyny, minerałów (głównie I oraz Ca) a także bioaktywnych polisacharydów (fukoidanów, laminaranów i alginianów). Uważa się, że makroglony będące podstawowym pożywieniem w wielu krajach azjatyckich, mogą także stać się żywnością lub składnikiem żywności i pasz na rynkach europejskich. Świat zachodni interesuje się makroglonami i postrzega je jako „superżywność”, przede wszystkim przez zwiększone zainteresowanie zdrowym stylem życia i dietą oraz bardziej zrównoważoną produkcją żywności. Praca prezentuje przegląd najnowszego piśmiennictwa dotyczącego możliwości wykorzystania glonów z rodzaju Fucus w rolnictwie, także w kontekście retardacji niekorzystnych przemian ekosystemów.
Downloads
Bibliografia
Asimakis E., Shehata A.A., Eisenreich W., Acheuk F., Lasram S., Basiouni S., Emekci M., Ntougias S., Taner G., May-Simera H., Yilmaz M., Tsiamis G. 2022. Algae and their metabolites as potential bio-pesticides. Microorganisms. 10. 307. https://doi.org/10.3390/microorganisms10020307.
Baroud S., Tahrouch S., Hatimi A. 2024. Effect of brown algae as biofertilizer materials on pepper (Capsicum annuum) growth, yield, and fruit quality. Asian Journal of Agriculture. 8 (1). 25-31.
Battacharyya D., Zamani Babgohari M.Z., Rathor P., Prithiviraj B. 2015. Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae. 196. 39-48.
Berthon J.-Y., Michel T., Wauquier A., Joly P., Gerbore J., Filaire E. 2021. Seaweed and microalgae as major actors of blue biotechnology to achieve plant stimulation and pest and pathogen biocontrol – a review of the latest advances and future prospects. The Journal of Agricultural Science. 159. 523-534.
Bikovens O., Ponomarenko J., Janceva S., Lauberts M., Vevere L., Tełyszewa G. 2017. Development of the approaches for complex utilization of brown algae (Fucus vesiculosus) biomass for the obtaining of value-added products. W: Raupelienė A. (ed.), Proceedings of the 8 th International Scientific Conference Rural Development 2017, Published by Aleksandras Stulginskis University, pp. 222-225.
Blunden G., El Barouni M.M., Gordon S.M., McLean W.F.H., Rogers D.J. 2013. Extraction, purification and characterisation of dragendorff-positive compounds from some British marine algae. Bot. Mar. 24. 451-456.
Blunden G., Morse P.F., Mathe I., Hohmann J., Critchleye A.T., Morrell S. 2010. Betaine yields from marine algal species utilized in the preparation of seaweed extracts used in agriculture. Nat. Prod. Commun. 5. 581-585.
Boutjagualt I., Hmimid F., Errami A., Bouharroud R., Qessaoui R., Etahiri S., Benba J. 2022. Chemical composition and insecticidal effects of brown algae (Fucus spiralis) essential oil against Ceratitis capitata Wiedemann (Diptera: Tephritidae) pupae and adults. Biocatalysis and Agricultural Biotechnology. 40. 102308. https://doi.org/10.1016/j.bcab.2022.102308.
Buryakov N.P., Sycheva L.V., Trukhachev V.I., Zaikina A.S., Buryakova M.A., Nikonov I.N., Petrov A.S., Kravchenko A.V., Fathala M.M., Medvedev I.K., et al. 2023. Role of dietary inclusion of phytobiotics and mineral adsorbent combination on dairy cows’ milk. Production, nutrient digestibility, nitrogen utilization, and biochemical parameters. Vet. Sci. 10. 238. https://doi.org/10.3390/vetsci10030238.
Cabrita A.R.J., Maia M.R.G., Oliveira H.M., Sousa-Pinto I., Almeida A.A., Pinto E., Fonsec A.JM. 2016. Tracing seaweeds as mineral sources for farm-animals. J. Appl. Phycol. 28. 3135-3150.
Campbell M. 2020. The potential applications of brown seaweed as an alternative feed for ruminant livestock. Queen’s University Belfast, PhD thesis.
Catarino M.D., Silva A.M.S., Cardoso S.M. 2017. Fucaceae: a source of bioactive phlorotannins. Int. J. Mol. Sci. 18. 1327. doi:10.3390/ijms18061327.
Catarino M.D., Silva A.M.S., Cardoso S.M. 2018. Phycochemical constituents and biological activities of Fucus spp. Marine Drugs. 16. 249. doi:10.3390/md16080249.
Chatzissavvidis Ch., Therios I. 2014. Role of algae in agriculture. Chapter 1. [In:] V.H. Pomin (ed.), Seaweeds: agricultural uses, biological and antioxidant agents. Wyd. Nova Science Publishers. 1-37.
Chen Q., Pan X.D., Huang B.F., Han J.L. 2018. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China. Sci. Rep. 8. doi: 10.1038/s41598-018-21732-z.
Circuncisão A.R., Ferreira S.S., Silva A.M.S., Coimbra M.A., Cardoso S.M. 2024. Fucus vesiculosus-rich extracts as potential functional food ingredients: a holistic extraction approach. Foods. 13. 540. https://doi.org/10.3390/foods13040540.
Craigie J.S. 2011. Seaweed extract stimuli in plant science and agriculture. Journal of Applied Phycology. 23. 371-393.
Denis C., Morançais M., Li M., Deniaud E., Gaudin P., Wielgosz-Collin G., Barnathan G., Jaouen P., Fleurence J. 2010. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem. 119. 913-917.
Dhargalkar V.K., Pereira N. 2005. Seaweed: promising plant of millennium. Science and Culture. 71 (3-4). 60-66.
Díaz-Rubio M.E., Pérez-Jiménez J., Saura-Calixto F., Diaz-Rubio M.E., Perez-Jimenez J., Saura-Calixto F. 2009. Dietary fiber and antioxidant capacity in Fucus vesiculosus products. Int. J. Food Sci. Nutr. 60. 23-34.
Duinker A., Roiha I.S., Amlund H., Dahl L., Lock E.-J., Kögel T., MågeA., Lunestad B.T. 2016. Potential risks posed by macroalgae for application as feed and food – a Norwegian perspective. National Institute of Nutrition and Seafood Research (NIFES), pp. 1-24. DOI:10.13140/RG.2.2.27781.55524.
Esserti S., Smaili A.,; Rifai L.A., Koussa T., Makroum K., Belfaiza M., Kabil E.M., Faize L., Burgos L., Alburquerque N., et al. 2017. Protective effect of three brown seaweed extracts against fungal and bacterial diseases of tomato. J. Appl. Phycol. 29. 1081-1093.
FAO 2019. Online query panels for aquaculture and capture production of seaweeds. http://www.fao.org/fishery/statistics/global-capture-production/query/en.
Fleurence J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends Food Sci. Technol. 10. 25-28.
FUKOSAN 2017–2020. Result report. Algae sources, cultivation and collection. pp. 1-9, [file:///C:/Users/URz/Downloads/Fucosan_Result_Report_WP3_web.pdf; 08.04.2024].
Garcia‐Vaquero M. 2018. Seaweed proteins and applications in animal feed. [In:] M. Hayes (ed.), Novel proteins for food, pharmaceuticals, and agriculture: sources, applications, and advances. First Edition. John Wiley & Sons Ltd., 139-161.
Garcia‐Vaquero M., Hayes M. 2016. Red and green macroalgae for fish and animal feed and human functional food development. Food Reviews International. 32 (1). 15-45.
Górka B., Korzeniowska K., Lipok J., Wieczorek P.P. 2018. The biomass of algae and algal extracts in agricultural production. In: Chojnacka K., Wieczorek P.P., Schroeder G., Michalak I. (eds), Algae biomass: characteristics and applications. Towards algae-based products. Developments in Applied Phycology 8. Springer International Publishing AG, pp. 103-114.
Hamed S.M., Abd El-Rhman A.A., Abdel-Raouf N., Ibraheem I.B.M. 2018. Role of marine macroalgae in plant protection & improvement for sustainable agriculture technology. Beni-Suef University Journal of Basic and Applied Sciences. 7. 104-110.
Hamouda H.A., Khalifa R.K.M., El-Dahshouri M.F., Zahran N.G. 2016. Yield, fruit quality and nutrients content of pomegranate leaves and fruit as influenced by iron, manganese and zinc foliar spray. Intl. J. Pharmtech. Res. 9 (3). 46-57.
Hansen H.R., Hector B.L., Feldmann J. 2003. A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep. Anim. Feed Sci.Technol. 105. 21-28.
Hatchett W.J., Coyer J.A., Sjøtun K., Jueterbock A., Hoarau G. 2022. A review of reproduction in the seaweed genus Fucus (Ochrophyta, Fucales): background for renewed consideration as a model organism. Front. Mar. Sci. 9. 1051838. doi: 10.3389/fmars.2022.1051838.
Henchion M., Hayes M., Mullen A.M., Fenelon M., Tiwari B. 2017. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. Foods. 6 (7). 53. doi:10.3390/foods6070053.
Herbreteau F., Coiffard L.J.M., Derrien A., De Roeck-Holtzhauer Y. 1997. The fatty acid composition of five species of macroalgae. Bot. Mar. 40. 25-27.
Khan W., Rayirath U.P., Subramanian S., Jithesh M.N., Rayorath P., Hodges D.M., Critchley A.T., Craigie J.S., Norrie J., Prithiviraj B. 2009. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 28. 386-399.
Kisvarga S., Farkas D., Boronkay G., Neményi A., Orlóci L. 2022. Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy. 12. 1043. https://doi.org/10.3390/agronomy12051043.
Kostecka J. 2010. Retardacja przekształcania zasobów przyrodniczych jako element zrównoważonego rozwoju. Biuletyn KPZK PAN. 242. 27-49.
Kraan S. 2013. Pigments and minor compounds in algae. [In:] Dominguez H. (ed.), Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing Limited, Cambridge, UK, pp. 205-251.
Krautforst K., Szymczycha‑Madeja A., Wełna M., Michalak I. 2023. Brown seaweed: Fucus vesiculosus as a feedstock for agriculture and environment protection. Scientific Reports. 13. 10065. https://doi.org/10.1038/s41598-023-36881-z.
Laekeman G. 2015. Assessment report on Fucus vesiculosus L., thallus. European Medicines Agency, London, pp. 55. EMA/HMPC/313675/2012.
Lorenzo J.M., Agregán R., Munekata P.E.S., Franco D., Carballo J., Sahin S., Lacomba R., Barba F.J. 2017. Proximate composition and nutritional value of three macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs. 15. 360. doi:10.3390/md15110360.
Makkar H.P.S., Tranb G., Heuzé V., Giger-Reverdin S., Lessire M., Lebas F., Ankers P. 2016. Seaweeds for livestock diets: a review. Animal Feed Science and Technology. 212. 1-17.
Michalak I., Baśladyńska S. 2021. Effect of Fucus extract and biomass enriched with Cu(II) and Zn(II) ions on the growth of garden cress (Lepidium sativum) under laboratory conditions. Italian Journal of Agronomy. 16. 1799. doi:10.4081/ija.2021.1799.
Michalak I., Tuhy Ł., Chojnacka K. 2016. Co-composting of algae and effect of the compost on germination and growth of Lepidium sativum. Pol. J. Environ. Stud, 25 (3). 1107-1115.
Morais T., Inácio A., Coutinho T., Ministro M., Cotas J., Pereira L., Bahcevandziev K. 2020. Seaweed potential in the animal feed: a review. Journal of Marine Science and Engineering. 8. 559. doi:10.3390/jmse8080559.
Mzibra A., Aasfar A., BenhimaR., Khouloud M., Boulif R., Douira A., Bamouh A., Kadmiri I.M. 2021. Biostimulants derived from Moroccan seaweeds: seed germination metabolomics and growth promotion of tomato plant. J. Plant Growth Regul. 40. 353-370.
Obluchinskaya E.D., Pozharitskaya O.N., Zakharov D.V., Flisyuk E.V., Terninko I.I., Generalova Y.E., Smekhova I.E., Shikov A.N. 2022. The biochemical composition and antioxidant properties of Fucus vesiculosus from the Arctic Region. Mar. Drugs. 20. 193. https://doi.org/10.3390/md20030193.
Oluwadare D.A., Carney H.E., Sarker M.H., Ennis Ch. J. 2020. Kinetics of water-extractable zinc release from seaweed (Fucus serratus) as soil amendment. J. Plant Nutr. Soil Sci. 183. 136-143.
Pandey D., Næss G., Fonseca A.J.M., Maia M.R.G., Cabrita A.R.J., Khanal P. 2023. Diferential impacts of post‑harvest hydrothermal treatments on chemical composition and in vitro digestibility of two brown macroalgae (Fucales, Phaeophyceae), Ascophyllum nodosum and Fucus vesiculosus, for animal feed applications. Journal of Applied Phycology. 35. 2511-2529.
Peinado I., Girón J., Koutsidis G., Ames J.M. 2014. Chemical composition, antioxidant activity and sensory evaluation of five different species of brown edible seaweeds. Food Res. Int. 66. 36-44.
Pereira L. 2016. Edible seaweeds of the world. 1st ed. CRC Press: Boca Raton, FL, USA.
Peixoto M.J., Salas-Leitóna M., Pereiraa L.F., Queiroza A., Magalhãesa F., Pereirad R., Abreud H., Reisa P.A., Magalhães Gonçalvesa J.F., de Almeida Ozório R.O. 2016. Role of dietary seaweed supplementation on growth performance, digestive capacity and immune and stress responsiveness in Europeanseabass (Dicentrarchus labrax). Aquaculture Reports. 3. 189-197.
Pliński M., Surosz W. 2013. Red Algae – Rhodophyta, Brown Algae – Phaeophyta. [In:] M. Pliński (ed.), Flora Zatoki Gdańskiej i Wód Przyległych (Bałtyk Południowy). 6. Wyd. UG. 1-148.
Rahikainen M., Yang B. 2020. Macroalgae as food and feed ingredients in the Baltic Sea region – Regulation by the European Union., pp. 1-20. [Available online: https://www. submarinernetwork.eu/images/grass/GRASS_O3.4a_EU_regulation_of_seaweed_food_and_feed.pdf.].
Sauvageau C. 1920. Utilisation des algues marines. Librairie Octave Doin, pp. 1-412.
Sharma S.H.S., Lyons G., McRoberts C., McCall D., Carmichael E., Andrews F., Swan R, McCormack R., Mellon R. 2012. Biostimulant activity of brown seaweed species from Strangford Lough: compositional analyses of polysaccharides and bioassay of extracts using mung bean (Vigno mungo L.) and pak choi (Brassica rapa chinensis L.). J. Appl. Phycol. 24. 1081-1091.
Strand A., Herstad O., Liaaen-Jensen S. 1998. Fucoxanthin metabolites in egg yolks of laying hens. Comparative Biochemistry and Physiology. Part A. 119. 963-974.
Van Patten M.S., Yarish Ch. 2009. Bulletin No. 39: Seaweeds of Long Island Sound (Second edition). Bulletins. 40. https://digitalcommons.conncoll.edu/arbbulletins/40.
WSH – Wild Seaweed Harvesting 2016. Strategic Environmental Assessment Environmental Report. Scottish Government. Glasgow. UK.
Wells M.L., Potin P., Craigie J.S., Raven J.A., Merchant S.S., Helliwell K.E., Smith A.G., Camire M.E., Brawley S.H. 2017. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29. 949-982.
Yurkevich M., Suleymanov R., Ikkonen E., Dorogaya E., Bakhmet O. 2022. Effect of brown algae (Fucus vesiculosus L.) on humus and chemical properties of soils of different type and postgermination growth of cucumber seedlings. Agronomy. 12. 1991. https://doi.org/10.3390/agronomy12091991.
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2024 Polish Journal for Sustainable Development

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.