Fontanny – elementy miejskiej architektury i „mikrorezerwaty” bioróżnorodności
DOI:
https://doi.org/10.15584/pjsd.2025.29.2.1Słowa kluczowe:
okrzemki (Bacillariophyta), różnorodność gatunkowa, fontannyAbstrakt
Glony odgrywają istotną rolę siedliskotwórczą w fontannach i basenach ze względu na stałą obecność wody. Celem prowadzonych badań było zbadanie różnorodności gatunkowej zbiorowisk okrzemek w fontannie miejskiej na terenie Parku Papieskiego w Rzeszowie. Podczas badań przeprowadzonych w latach 2023-2024 zidentyfikowano 101 taksonów okrzemek, z których 7 uzyskało rangę dominantów: Achnanthes coarctata, Achnanthidium minutissimum, Cocconeis euglypta, Hantzschia amphioxys, Humidophila contenta, Luticola sp. i Nitzschia communis. Większość z nich zaliczana jest do gatunków aerofilnych, które występują w siedliskach podlegających okresowemu wysychaniu oraz kosmopolitycznych. Na podstawie obliczonych wskaźników ekologicznych w zbiorowisku okrzemek dominowały taksony neutralne i alkalifilne, o szerokim spektrum troficznym i eutroficzne oraz β-mezosaprobowe. Wskaźnik zasolenia wskazywał, że większość okrzemek stanowią taksony tzw. „słodkowodno-słonawe”.
Downloads
Bibliografia
Bąk M., Witkowski A., Żelazna-Wieczorek J., Wojtal A.Z., Szczepocka E., Szulc A., Szulc B. 2012. Klucz do oznaczania okrzemek w fitobentosie na potrzeby oceny stanu ekologicznego wód powierzchniowych w Polsce. Wyd. Biblioteka Monitoringu Środowiska. Główny Inspektorat Ochrony Środowiska. Warszawa. 1-452.
Bergier T., Kronenberg J., Wagner I. (red.) 2014. Woda w mieście. Zrównoważony rozwój – zastosowania. Wyd. Fundacja Sendzimira. Kraków. 1-127.
Bolívar-Galiano F., Abad-Ruiz C., Sánchez-Castillo P., Toscano M., Romero-Noguera J. 2020. Frequent microalgae in the mountains of the Alhambra and Generalife: identification and creation of a culture collection. Applied Sciences. 10. 6603. doi:10.3390/app10186603.
Bolivar-Galiano F., Cuzman O.A., Abad-Ruiz C., Sánchez-Castillo P. 2021. Facing phototrophic microorganisms that colonize artistic fountains and other wet stone surfaces: identification keys. Applied Sciences. 11. 8787. https://doi.org/10.3390/app11188787.
Budzińska K., Pyrc N., Szejniuk B., Pasela R., Traczykowski A., Michalska M., Berleć K. 2017. Microbiological contamination of water in fountains located in the Ciechocinek Health Resort. Annual Set The Environment Protection, Rocznik Ochrona Środowiska. 19. 181-199.
Burkowska-But A., Swiontek-Brzezinska M., Walczak M. 2013. Microbiological contamination of water in fountains located in the city of Toruń, Poland. Annals of Agricultural and Environmental Medicine. 4. 645-648.
Hindáková A. i Hindák F. 1998. Green algae of five city fountains in Bratislava (Slovakia). Biologia. 53. 481-493.
Hodgson J.Y.S., Barber K.O., Hustead Ch.J. 2016. An inquiry-based investigation of freshwater diatom ecology. The American Biology Teacher. 78 (8). 664-668.
Hofmann G., Werum M., Lange-Bertalot H. 2011. Diatomeen im Süβwasser – Benthos von Mitteleuropa. Bestimmungsflora Kieselalgen für die ökologische Praxis. Über 700 der häugfisten Arten und ihre Ökologie. [w:] H. Lange-Bertalot (red.). A.R.G. Gantner Verlag K.G., Ruggell. 1-908.
Ibarra-Gallardo C.E. i Novelo E. 2018. Algas y cianoprocariontes epilíticos de la Zona Arqueológica de Yaxchilán, Chiapas, México. Rev. Mex. Biodivers. 89. 590-603.
Kawecka B. 1980. Sessile algae in european mountains streams. 1. The ecological characteristics of communities. Acta Hydrobiologica. 22. 361-420.
Kusińska E. 2017. Nowoczesne fontanny w miejskiej przestrzeni publicznej. Środowisko Mieszkaniowe. 20. 112-120.
Lange-Bertalot H. 2001. Navicula sensu stricto. 10 genera separated from Navicula sensu lato. Frustulia. Diatoms of Europe. 2. 1-526.
Lange-Bertalot H., Hofmann G., Werum M., Cantonati M. 2017. Freshwater benthic diatoms of Central Europe: over 800 common species used in ecological assessments. English edition with updated taxonomy and added species. [w]: M. Cantonati i in. (red.). Koeltz Botanical Books, Schmitten – Oberreifenberg. 1-942.
Levkov Z., Metzeltin D., Pavlov A. 2013. Luticola and Luticolopsis. Diatoms of Europe. 7. 1-698.
Małecka-Adamowicz M. i Kubera Ł. 2017. Jakość mikrobiologiczna wód fontann miejskich zlokalizowanych na terenie Bydgoszczy. Woda-Środowisko-Obszary Wiejskie. 17 (2). 139-147.
Manning F.S., Curtis P.J., Walker I.R., Pither J. 2021. Potential long-distance dispersal of freshwater diatoms adhering to waterfowl plumage. Freshwater Biology. 66. 1136-1148.
Milik J., Pasela R., Budzińska K. 2018. Variability of physical and chemical parameters of water from fountains in health resorts. E3S Web of Conferences. 44. 00112. https://doi.org/10.1051/e3sconf/20184400112.
Noga T., Stanek-Tarkowska J., Kocielska-Streb M., Kowalska S., Ligęzka R., Kloc U., Peszek Ł. 2012. Endangered and rare species of diatoms in running and standing waters on the territory of Rzeszów and the surrounding area. [w:] J. Kostecka, J. Kaniuczak (red.). Practical Applications of Environmental Research. Nauka dla Gospodarki. 3. 331-340.
Noga T., Stanek-Tarkowska J., Peszek Ł., Pajączek A., Kowalska S. 2013. Use of diatoms to assess water quality of anthropogenically modified Matysówka stream. Journal of Ecological Engineering. 14 (2). 1-11.
Noga T., Stanek-Tarkowska J., Kloc U., Kochman-Kędziora N., Rybak M., Peszek Ł., Pajączek A. 2016. Diatom diversity and water quality of a suburban stream: a case study of the Rzeszów city in SE Poland. Biodiversity Research and Conservation. 41. 19-34.
Noga T., Lis M., Poradowska A. 2024. Występowanie okrzemek z rodzaju Achnanthidium w rzece Osławie na terenie rezerwatu „Przełom Osławy pod Duszatynem”. Roczniki Bieszczadzkie. 32. 43-71.
Raszka B. i Kasprzak K. 2023.Woda jako element krajobrazu miast. Turystyka Kulturowa. 127 (2). 131-169.
Siemińska J., Bąk M., Dziedzic J., Gąbka M., Gregorowicz P., Mrozińska T., Pełechaty M., Owsiany P.M., Pliński M., Witkowski A. 2006. Red list of the algae in Poland – Czerwona lista glonów w Polsce. [w:] Z. Mirek i in. (red.). Red list of plants and fungi in Poland – Czerwona lista roślin i grzybów Polski. Polish Academy of Sciences, Kraków. 35-52.
Szczepańska M. 2010. Fontanny a rekreacyjna funkcja miasta. Studia Periegetica. 4. 149-160.
Tandyrak R., Parszuto K., Grochowska J., Augustyniak R., Lopata M., Plachta A. 2019. The pilot study of water chemistry in municipal fountains in Olsztyn (NE Poland). IOP Conf. Ser., Earth and Environmental Science. 221. 012114. doi:10.1088/1755-1315/221/1/012114.
Włodyka-Bergier A., Bergier T., Stańkowska E., Gajewska D. 2019. Evaluation of microbial quality of water in the fountains in Krakow. Infrastructure and Ecology of Rural Areas. 2 (1). 107-118.
Van Dam H., Martens A., Sinkeldam J. 1994. A coded checklist and ekological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology 28, 117–133.
Vázquez-Nion D., Rodriguez-Castro J., López-Rodríguez M., Fernández-Silva I., Prieto B. 2016. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures. Biofouling. 32. 657-669.
Zurita Y.P., Cultrone G., Castillo P.S., Sebastián E., Bolívar F. 2005. Microalgae associated with deteriorated stonework of the fountain of Bibatauín in Granada, Spain. International Biodeterioration & Biodegradation. 55. 55-61.
www 1: https://erzeszow.pl/45-niezbednik-mieszkanca/16641-parki-w-rzeszowie/16674 -park-papieski.html. (dostęp w dniu 01.12.2025).
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2025 Polish Journal for Sustainable Development

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.