Wybrane aspekty związane z akwakulturami makroglonów na przykładzie Neopyropia (Porphyra)

Autor

  • Teresa Noga Zakład Gleboznawstwa, Chemii Środowiska i Hydrologii
  • Natalia Kochman-Kędziora Zakład Ekologii i Ochrony Środowiska, Uniwersytet Rzeszowski

DOI:

https://doi.org/10.15584/pjsd.2023.27.1.4

Słowa kluczowe:

Neopyropia (Porphyra), nori, wykorzystanie w żywności i rolnictwie

Abstrakt

Glony (algi), od tysiącleci wykorzystywane do celów spożywczych i rolniczych w krajach azjatyckich, stają się w ostatnich latach coraz bardziej popularne w akwakulturach. Produkty zawierające w swym składzie glony charakteryzują się wysoką zawartością białka, witamin oraz minerałów i są coraz częściej wybierane przez konsumentów, m.in. w związku z panującą modą na zdrowe odżywianie. Uprawiane komercyjnie gatunki z rodzaju Neopyropia (syn. Porphyra) stanowią cenne źródło składników odżywczych i mogą przyczynić się do zaspokojenia rosnących potrzeb żywieniowych na świecie. W artykule podsumowano najnowsze piśmiennictwo dotyczące wykorzystania szkarłatnic w przemyśle rolno-spożywczym. Zwrócono także uwagę na potencjalne zagrożenia wynikające z zanieczyszczenia produktów glonowych, głównie metalami ciężkimi.

Downloads

Download data is not yet available.

Bibliografia

Ainsa A., Honrado A., Marquina P., Beltrán J.A., Calanche J. 2022. Influence of seaweeds on the quality of pasta as a plant-based innovative food. Foods. 11. 2525. doi.org/10.3390/foods11162525.

Ashkenazi D.Y., Figueroa F.L., Korbee N., García-Sánchez M., Vega J., Ben-Valid S., Paz G., Salomon E., Israel Á., Abelson A. 2022. Enhancing bioproducts in seaweeds via sustainable aquaculture: antioxidant and sun-protection compounds. Mar. Drugs. 20. 767. https://doi.org/10.3390/md20120767.

Callaway R., Shinn A.P., Grenfell S.E., Bron J.E., Burnell G., Cook E.J., Crumlish M., Culloty S., Davidson K., Ellis R.P., et al. 2012. Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquat. Conserv. Mar. Freshw. Ecosyst. 22. 389-421.

Cao J., Wang J., Wang S., Xu X. 2016. Porphyra species: a mini-review of its pharmacological and nutritional properties. J. Med. Food. 19 (2). 111-119.

Cho T.J., Rhee M.S. 2020. Health functionality and quality control of laver (Porphyra, Pyropia): current issues and future perspectives as an edible seaweed. Mar. Drugs. 18 (14). doi:10.3390/md18010014.

Chopin T., Yarish C., Wilkes R., Belyea E., Lu S., Mathieson A. 1999. Developing Porphyra/salmon integrated aquaculture for bioremediation and diversification of the aquaculture industry. J. Appl. Phycol. 11. 463-472.

Chung I., Kang Y.H., Yarish C., Kraemer G.P., Lee J. 2002. Application of seaweed cultivation to the bioremediation of nutrient-rich effluent. Algae. 17 (3). 187-194.

Costa M., Cardoso C., Afonso C., Bandarra N.M., Prates J.A.M. 2021. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. J. Anim. Physiol. Anim. Nutr. 105. 1075-1102.

García-Poza S., Leandro A., Cotas C., Cotas J., Marques J.C. Pereira L., Gonçalves A.M.M. 2020. The evolution road of seaweed aquaculture: cultivation technologies and the industry 4.0. Int. J. Environ. Res. Public Health. 17. 6528. doi:10.3390/ijerph17186528.

Gil F.M. 2009. Natura 2000 i akwakultura. Wyd. Ministerstwo Środowiska. Warszawa.

Kapraun D.F, Lemus A.J. 1987. Field and culture studies of Porphyra spiralis var. amplifolia. Olivieira Filho et Coll (Bangiales, Rhodophyta) from Isla de Margarita, Venezuela. Botanica. Marina. 30. 483-490.

Kerrison P.D. 2016. Algae as crops seaweed. Encyclopedia of Applied Plant Sciences. Elsevier Academic Press. New York. Volume 3. pp. 148-152.

Knoop J., Barrento S., Lewis R., Walter B., Griffin J.N. 2022. Incorporating concepts of biodiversity into modern aquaculture: macroalgal species richness enhances bioremediation efficiency in a lumpfish hatchery. Algae. 37 (3). 213-226.

Kumar Y., Tarafdar A., Badgujar P.C. 2021. Seaweed as a source of natural antioxidants: therapeutic activity and food applications. J. Food Qual. 2021. 5753391.

Leandro A., Pacheco D., Cotas J., Marques J.C., Pereira L., Gonçalves A.M.M. 2020. Seaweed’s bioactive candidate compounds to food industry and global food security. Life. 10. 140. doi:10.3390/life10080140.

Lind V., Weisbjerg M.R., Jørgensen G.M., Fernandez-Yepes J.E., Arbesú L., Molina-Alcaide E. 2020. Ruminal fermentation, growth rate and methane production in sheep fed diets including white clover, soybean meal or Porphyra sp. Animals. 10. 79. doi.org/10.3390/ani10 010079.

Makkar H.P.S., Tranb G., Heuzé V., Giger-Reverdin S., Lessire M., Lebas F., Ankers P. 2015. Seaweeds for livestock diets: a review. Animal Feed Science and Technology. (2015). doi.org/10.1016/j.anifeedsci.2015.09.018.

Milhazes-Cunha H., Otero A. 2017. Valorisation of aquaculture effluents with microalgae: The Integrated Multi-Trophic Aquaculture concept. Algal Research. 24. 416-424.

Morais T., Inácio A., Coutinho T., Ministro M., Cotas J., Pereira L., Bahcevandziev K. 2020. Seaweed potential in the animal feed: a review. J. Mar. Sci. Eng. 8. 559. doi:10.3390/jmse8080559.

Neori A., Cohen I., Gordin H. 1991. Ulva lactuca biofilters for marine fish-pond effluents: II. Growth rate, yield and C:N ratio. Bot. Mar. 34. 483-489.

Neori A., Chopin T., Troell M., Buschmann A.H., Kraemer G.P., Halling Ch., Shpigel M., Yarish Ch. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture. 231. 361-391.

Paiva L., Lima E., Patarra R.F., Neto A.I., Baptista J. 2014. Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chemistry. 164. 128-135.

Sutherland J.E., Lindstrom S.C., Nelson W.A., Brodie J., Lynch M.D., Hwang M.S., Choi H.-G., Miyata M., Kikuchi N., Oliveira M.C., Farr T., Neefus C., Mols-Mortensen A., Milstein D., Müller K.M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). Journal of Phycology. 47 (5). 1131-1151.

Thiviya P., Gamage A., Gama-Arachchige N.S., Merah O., Madhujith T. 2022. Seaweeds as a source of functional proteins. Phycology. 2. 216-243.

van Groenigen J., Derksen G.C.H., Timmermans K.R. 2022. Review of presence, induction and isolation of major cellular constituents from Porphyra sensu lato (Rhodophyceae), including mycosporine-like amino acids (MAA’s). J. Mar. Biol. Aquaculture Res. 4 (1). 30-46.

Vatsos I.N., Angelidis P., Theodoridis A., Batzios C. 2015. Integrated aquaculture – an old concept with new applications in Greece. Int. J. Data Analysis Techniques and Strategies. 7 (2). 129-140.

Xu N., Xu K., Wang W., Xu Y., Ji D., Chen C., Xie C. 2020. Nutrient enrichment improves growth and food quality of two strains of the economic seaweed Pyropia haitanensis. Front. Mar. Sci. 7. 544582. doi: 10.3389/fmars.2020.544582.

Yang L.-E., Deng Y.-Y., Xu G.-P., Russel S., Lu, Q.-Q., Brodie J. 2020. Redefining Pyropia (Bangiales, Rhodophyta): four new genera, resurrection of Porphyrella and description of Calidia pseudolobata sp. nov. from China. Journal of Phycology. 56 (4). 862-879.

Zalecenie w sprawie definicji akwakultury 2022. AAC 2022-18, lipiec 2022 r., Wyd. Komitet Doradczy ds. Akwakultury (AAC). Belgia. pp. 1-7. [dok. Elektr.: https://www.fao.org/3/x6941e/x6941e04.htm, data wejścia: 29.01.2023].

Pobrania

Opublikowane

2023-06-30

Inne teksty tego samego autora