Applying isotope analyses of cremated human bones in archaeological research – a review.
DOI:
https://doi.org/10.15584/anarres.2020.15.1Keywords:
isotopes, cremated human bones, radiocarbon dating, funerary practices, migrationAbstract
Numerous experiments have recently been conducted on burnt bones in order to develop methods of isotope analysis which would be useful in archaeological research. Since the results of these studies are not yet widely known, this review presents their potential applications in investigations of human remains from cremation burials. Radiocarbon dating of burnt osteological materials is discussed, including problems related to the “old wood effect”. Also considered is the analysis of light stable isotopes, i.e. δ13C, δ15N and δ18O, which is unsuitable for palaeodietary determinations, but useful as a source of information about certain parameters of funeral pyres. Tracing geographical origins and human mobility is possible by means of the analysis of strontium isotope ratio 87Sr/86Sr. Since an understanding of high-temperature-induced transformations of bone structure and chemical composition is important for these considerations, a detailed account of the processes is given as an introduction.
References
Astala R. and Stott M. J. 2005. First principles investigation of mineral component of bone: CO3 Substitutions in Hydroxyapatite. Chemistry of Materials 17(16), 4125–4133.
Beard B. L. and Johnson C. M. 2000. Strontium Isotope Composition of Skeletal Material Can Determine the Birth Place and Geographic Mobility of Humans and Animals. Journal of Forensic Science 45(5), 1049–1061.
Belka Z., Dopieralska J., Szczepanek A. and Jarosz P. 2018.Human mobility in the final eneolithic population of Święte, Jarosław district, south-eastern Poland: evidence from strontium isotope data. In A. Kośko, A. Szczepanek and P. Włodarczak (eds.), Reception of pontic culture traditions among the final eneolithic communities in the Subcarpathian Region, 3rd Millennium BC, Baltic-Pontic Studies 23. Poznań: Adam Mickiewicz University. Institute of Eastern Studies, 246–258.
Bentley R. A. 2006. Strontium isotopes from the earth to the archaeological skeleton: A Review. Journal of Archaeological Method and Theory 13, 135–187.
Brock F., Higham T. and Bronk Ramsey C. 2010. Pre-screening techniques for identification of samples suitable for radiocarbon dating of poorly preserved bones. Journal of Archaeological Science 37(4), 855–865.
Capuzzo G., Snoeck Ch., Boudin M.et al. 2020. Cremation vs. inhumation: modeling cultural changes in funerary practices from the Mesolithic to the Middle Ages in Belgium using Kernel Density Analyses on 14C data. Radiocarbon 00(0), 1–24.
Chai H., Lee J. J., Constantino P. J., Lucas P. W. and Lawn B. R. 2009. Remarkable resilience of teeth. Proceeding of the National Academy of Sciences USA 106(18), 7289–7293.
DeNiro M. J., Schoeninger M. J. and Hastorf C. 1985. Effect of Heating on the Stable Carbon and Nitrogen Isotope Ratios of Bone Collagen. Journal of Archaeological Science 12, 1–7.
Fairgrieve S. 2008. Forensic cremation: recovery and analysis.Boca Raton, Londyn, New York: CRC Press.
Gil-Drozd A. 2010. Początki ciałopalenia na obszarze Europy.Analecta Archaeologica Ressoviensia 5, 9–94.
Goncalves D., Campanacho V., Thompson T. and Mataloto R. 2015. The bioarchaeological analysis of cremation at the Iron Age necropolis of Tera (Portugal). In T. Thompson (ed.), The Archaeology of Cremation. Oxford, Philadelphia: Oxbow Books, 63–96.
Graham D. D., Bethard J. D. 2019. Reconstructing the origins of the Perrins Ledge cremains using strontium isotope analysis. Journal of Archaeological Science. Reports 24, 350–362.
Grupe G. and Hummel S. 1991. Trace element studies on experimentally cremated bone, I. Alteration of the chemical composition at high temperatures. Journal of Archaeological Science 18(2), 177–186.
Harbeck M., Schleuder R., Schneider J., Wiechmann I., Schmahl W. W. and Grupe G. 2011. Research potential and limitations of trace analyses of cremated remains. Forensic Science International 204(1-3), 191–200.
Harvig L. 2015. Past cremation practise from a bioarchaeological perspective: How new methods and techniques revealed conceptual changes in cremation practises during the late Bronze Age and early Iron Age in Denmark. In T. Thompson (ed.), The Archaeology of Cremation. Burned human remains in funerary studies. Oxford, Philadelphia: Oxbow Books, 43–62.
Harvig L., Frei K., Price T. and Lynnerup N. 2014. Strontium isotope signals in cremated petrous portions as indicator for childhood origin. PLoS ONE 9(7): e101603.
Harvig L., Lunnerup N. and Amsgaard Ebsen J. 2012. Computed Tomography and Computed Radiography of Late Bronze Age cremation urns from Denmark: An interdisciplinary attempt to develop methods applied in bioarchaeological cremation research. Archaeometry 54(2), 369–387.
Hoppe K., Koch P. and Furutani T. 2003. Assessing the preservation of biogenic strontium in fossil bones and tooth enamel. International Journal of Osteoarchaeology 13, 20–28.
Huls C. M., ErlenkeuserH., NadeauM. J., GrootesP. M. and AndersenN. 2010. Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52(2-3), 587–599.
Jeffery N. and Spoor F. 2004. Prenatal growth and development of the modern human labyrinth. Journal of Anatomy 204(2), 71–92.
Jones L. and Atkins P. 2016. Chemia ogólna. Cząsteczki, materia,reakcje. Warszawa: PWN.
Jorkov M. L., Heinemeier J. and Lynnerrup N. 2009. The petrous bone – A new sampling site for identifying early dietary patterns in stable isotopic studies. American Journal of Physical Anthropology 138(2), 199–209.
Lanting J. N. and Brindley A. L. 1998. Dating Cremated Bone: The Dawn of a New Era. The Journal of Irish Archaeology 9, 1–7.
Lanting J. N. and Brindley A. L. 2000. An exciting new development: calcined bones can be 14C-dated. The European Archaeologist 13, 7–8.
Lanting J. N., Aerts-Bijma A. T. and van der Plicht J. 2001. Dating of cremated bones. Radiocarbon 43(2A), 249–254.
Lebon M., Reiche I., Bahain J. J., Chadefaux C., Moigne A. M., Frohlich F., Semah F., Schwarcz H. P. and Falgueres C. 2010. New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier Transform Infrared Spectrometry. Journal of Archaeological Science 37(9), 2265–2276.
Lee C. L. and Einhorn T. A. 2001. The bone organ system– form and function. In R. Marcus, D. Feldman and J. Kelsey (eds.), Osteoporosis. Standford, California: Academic Press, 3–20.
LeGeros R. Z., Trautz O. R., Klein E. and LeGeros J. P. 1969. Two types of carbonate substitution in the apatite structure. Cellular and Molecular Life Science 25(1), 5–7.
LeGeros, R. Z. 1991. Calcium phosphates in oral biology and medicine. Basel, New York: Karger.
Linderholm A., Kılınc M. G., Szczepanek A., Włodarczak P., Jarosz P., Belka Z., Dopieralska J., Werens K., Górski J., Mazurek M., Hozer M., Rybicka M., Ostrowski M., Bagińska J., Koman W., Rodrigez-Verela R., Stora J., Gotherstrom A. and Krzewińska M. 2020. Corded Ware cultural complexity uncovered using genomic and isotopic analysis from south-eastern Poland. Scientific Reports 10: 6885(2020).
Mamede A., Goncalves D., Marques M. P.and Batista de Carvalho L. 2018. Burned bones tell their own stories: A review of methodological approaches to assesss heat- induced diagenesis. Applied Spectroscopy Reviews 53(8), 603–635.
Madupalli H., Pavan B. and Tecklenburg M.M. 2017. Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. Journal of Solid State Chemistry 255, 27–35.
McKinley J. I. 1994. The Anglo-Saxon cemetery at Spong Hill, North Elmham. Part VIII: The cremations. East Anglian Archaeology 69.Moskal-del Hoyo M. 2012. The use of wood in funerary pyres: random gathering or special selection of species? Case study of three necropolises from Poland. Journal of Archaeological Science 39(11), 3386–3395.
Munro L. E., Longstaffe F.J. and White C. D. 2008. Effect of heating on the carbon and oxygen-isotope compositions of structural carbonate in bioapatite from modern deer bone. Paleogeography, Paleoclimatology, Paleoecology 266(3-4), 142–150.
Muller W., Nava A., Evans D., Rossi P., Alt K. and Bondioli L. 2019. Enamel mineralization and compositional time-resolution in human teeth evaluated via histologically- defined LA-ICPMS profiles. Geochimica et Cosmochimica Acta 255, 105–126.
Naysmith P., Scott E. M., Cook G. T., Heinemeier J., van der Plicht J., Van Strydonck M., Bronk Ramsey C., Grootes P.M. and Freemann S. 2007. A cremated bone intercomparison study. Radiocarbon 49(2), 403–408.
Olsen J., Heinemeier J., Bennike P., Krause C., Hornstrup K. M. and Thrane H. 2008. Characterisation and blind testing of radiocarbon dating of cremated bone. Journal of Archaeological Science 35(3), 791–800.
Olsen J., Heinemeier J., Bennike P., Krause C., Hornstrup K. M. and ThraneH. 2013. “Old wood” effect in radiocarbon dating of prehistoric cremated bones? Journal of Archaeological Science 40(1), 30–34.
Quarta G., Calcagnile L., D’Elia M., Maruccio L., Gaballo V. and Carmia A. 2013. A combined PIXE-PIGE approach for the assessment of the diagenetic state of cremated bones submitted to AMS radiocarbon dating. Nuclear Instruments and Methods in Physics Research B 294, 221–225.
Schmidt C. W. and Symes S. A. (eds.) 2015. The analysis of burned human remains. Second Edition: Elsevier.
Slovak N. M. and Paytan A. 2012. Applications of Sr Isotopes in Archaeology. In M. Baskaran (ed.), Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Berlin, Heidelberg: Springer, 743–768.
Snoeck Ch. 2014. A Burning Question: Structural and Isotopic Studies of Cremated Bone in Archaeological Contexts. Unpublished PhD thesis: University of Oxford.
Snoeck Ch., Lee-Thorp J. A. and Schulting R. J. 2014a. From bone to ash: Compositional and structural changes in burned modern and archaeological bone. Palaeogeography, Palaeoclimatology, Palaeoecology 416, 55–68.
Snoeck Ch., Brock F. and Schulting R. J. 2014b. Carbon exchanges between bone apatite and fuels during cremation: impact on radiocarbon dates. Radiocarbon 56(2), 591–602.
Snoeck Ch., Lee-Thorp J. A., Schulting R., de Jong J., Debouge W. and Mattielli N. 2015. Calcined bone provides a reliable substrate for strontium isotope ratios as shown by an enrichment experiment. Rapid Communication in Mass Spectrometry 29(1), 107–114.
Snoeck Ch., Schulting R. J., Lee-Thorp J. A., Lebon M. and Zazzo A. 2016a. Impact of heating conditions on the carbon and oxygen isotope composition of calcined bone. Journal of Archaeological Science 65, 32–43.
Snoeck Ch., Pouncett J., Ramsey G., Meighan I. G., Mattielli N., Goderis S., Lee-Thorp J. A. and Schulting R. J. 2016b. Mobility during the Neolithic and Bronze Age in Northern Ireland explored using strontium isotope analysis of cremated human bone. American Journal of Physical Anthropology 160(3), 397–413.
Snoeck Ch., Pouncett J., Claeys P., Goderis S., Mattielli N., Parker Pearson M., Willis Ch., Zazzo A., Lee-Thorp J. and Schulting R. 2018. Strontium isotope analysis on cremated human remains from Stonehenge suport links with west Wales. Scientific Reports 8: 10790.
Stiner M., Kuhn S., Weiner S. and Bar-Yosef O. 1995. Differential burning, recrystallization and fragmentation of archaeological bone. Journal of Archaeological Science 22, 223–237.
Szczepanek A., Belka Z., Jarosz P., Pospieszny Ł., Dopieralska J., Frei K., Rauba-Bukowska A., Werens K., Górski J., Hozer M., Mazurek M. and Włodarczak P. 2018. Understanding Final Neolithic communities in southeastern Poland: New insights on diet and mobility from isotopic data. PLoS ONE 13(12): e0207748.
Szostek K., Mądrzyk K. and Cienkosz-Stepańczak B. 2015. Strontium isotopes as an indicator of human migration – easy questions, difficult answers. Anthropological Review 78(2), 133–156.
Thomspon T. J., Islam M. and Bonniere M. 2013. A new statistical approach for determining the crystallinity of heat-altered bone mineral from FTIR spectra. Journal of Archaeological Science 40(1), 416–422.
Thompson T. 2015a. Fire and the body: Fire and the people. In T. Thomspon (ed.), The Archaeology of Cremation. Burned human remains in funerary studies. Oxford, Philadelphia: Oxbow Books, 1–17.
Thompson T. 2015b. The analysis of heat-induced crystallinity change in bone. In C. W. Schmidt and S. A. Symes (eds.), The analysis of burned human remains. Second Edition. Oxford: Elsevier, 323–337.
Ubelaker D. H. 2009. The forensic evaluation of burned skeletal remains: a synthesis. Forensic Science International 183, 1–5.
Ubelaker D. 2015. Case applications of recent research on thermal effects on the skeleton. In T. Thompson (ed.), The Archaeology of Cremation. Oxford, Philadelphia: Oxbow Books, 213–226.
Van Strydonck M., Boudin M., Hoefkens M. and De Mulder G. 2005. 14C-dating of cremated bones, why does it work? Lunula 13, 3–10.
Van Strydonck M., Boudin M. and De Mulder G. 2009. 14C dating of cremated bone: the issue of sample contamination. Radiocarbon 51(2), 553–568.
Van Strydonck M., Boudin M. and De Mulder G. 2010. The carbon origin of structural carbonate in bone apatite of cremated bones. Radiocarbon 52(2), 578–586.
Wadyl S. (ed.) 2019. Ciepłe. Elitarna nekropola wczesnośredniowieczna na Pomorzu Wschodnim. Gdańsk: Muzeum Archeologiczne w Gdańsku.
Williams H. 2015. Towards an Archaeology of Cremation. In C. W. Schmidt and S. A. Symes (eds.), The analysis of burned human remains. Second Edition. Oxford: Elsevier, 259–295.
Wopenka B. and Pasteris J. D. 2005. A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C 25(2), 131–143.
Zazzo A., Saliege J. F., Person A. and Boucher H. 2009. Radiocarbon dating of calcined bones: where does the carbon come from? Radiocarbon 51(2), 601–611.
Zazzo A., Saliege J. F., Lebon M., Lepetz S. and Moreau C. 2012. Radiocarbon dating of calcined bones: insights from combustion experiments under natural conditions. Radiocarbon 54 (3-4), 855–866