Bacterial Endospores as an Additional Source of Archaeological Knowledge in the Analysis of a Burial Cemetery of the Tarnobrzeg Lusatian Culture in Dębina (SE Poland)

Autor

DOI:

https://doi.org/10.15584/anarres.2023.18.8

Słowa kluczowe:

archaeology studies, microbiological analyses, Tarnobrzeg Lusatian culture , endospores

Abstrakt

Archaeological studies need to use laboratory techniques, including analytical methods like Atomic Absorption Spectrometry, gas chromatography – mass spectrometry, and high-performance liquid chromatography, as well as genetic methods to resolve and verify scientific hypotheses. However, additional tools are still needed in the case of the cultural practices
and traditions of ancient societies. Archaeological examinations of cultural practices have made significant progress in recent years, but additional tools are still needed to fully understand the complexity and diversity of these practices. In this work, we demonstrate how the genotyping of soil bacteria that can produce endospores is a potentially additional method for discovering past funeral rituals in various human populations who used food during their ceremonies. Endospores were isolated from soil samples taken from inside earthenware cup and pot-type vessels from a burial ground identified with the Tarnobrzeg Lusatian culture (SE Poland). The detected species of spore-forming bacteria strains were mostly environmental (originating from soil and / or water). However, the presence of some of the taxa i.e. (Peanibacillus, Bacillus) may provide a valuable source of archaeological information. We found that a combination of molecular and microbiological analysis can support archaeological studies of burial grounds and – in particular – individual graves, especially when they are characterized by a complete lack of bones.

Bibliografia

Acinas S. G., Marcelino L. A., Klepac-Ceraj V. and Polz M. F. 2004. Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. Journal of Bacteriology 186(9), 2629–2635.

Alippi A. M., López A. C. and Aguilar O. M. 2002. Differentiation of Paenibacillus larvae subsp. larvae, the cause of American foulbrood of honeybees, by using PCR and restriction fragment analysis of genes encoding 16S rRNA. Applied and Environmental Microbiology 68(7), 3655–3660.

Andersen K., Bird K. L., Rasmussen M., Haile J., Breuning-Madsen H., Kjaer K. H., Orlando L., Gilbert M. T. and Willerslev E. 2012. Meta-barcoding of “dirt” DNA from soil reflects vertebrate biodiversity. Molecular Ecology 21(8), 1966–1979.

Beirinckx S., Viaene T., Haegeman A., Debode J., Amery F., Vandenabeele S., Nelissen H., Inzé D., Tito R., Raes J., De Tender C. and Goormachtig S. 2020. Tapping into the maize root microbiome to identify bacteria that promote growth under chilling conditions. Microbiome 8(1), 54–54.

Bondetti M., Scott S., Lucquin A., Meadows J., Lozovskaya O., Dolbunova E., Jordan P. and Craig O. E. 2020. Fruits, fish and the introduction of pottery in the Eastern European plain: Lipid residue analysis of ceramic vessels from Zamostje 2. Quaternary International 541, 104–114.

Bulska E. and Wróbel K. 1992. Oznaczanie sodu i potasu w próbkach piasku. Przegląd Archeologiczny 39, 120–121.

Bulska E., Wrzesińska A. and Wrzesiński J. 1996. Zawartość naczyń grobowych – próba analizy i interpretacji. Studia Lednickie 4, 345–356.

Cano R. J., Tiefenbrunner F., Ubaldi M., Del Cueto C., Luciani S., Cox T., Orkand P., Künzel K. H. and Rollo F.

Sequence analysis of bacterial DNA in the colon and stomach of the Tyrolean Iceman. American Journal of Physical Anthropology 112(3), 297–309.

Cirlot J. E. 2007. Słownik symboli. Kraków: Znak.

Czopek S. and Trybała-Zawiślak K. 2014. Wybrane aspekty obrządku pogrzebowego we wczesnej fazie tarnobrzeskiej kultury łużyckiej na przykładzie stanowiska 6 w Dębinie, pow. łańcucki. In D. Kozak (ed.), Naukovì studìï, 7: Kul´toví ta pohoval´ní pam’âtki u Víslo-Dníprovs´komu regíoní: problem íinterpretacï. Vinniki, Lʹvìv: Vidavnictvo Aprìorì, 118–130.

Dąbrowski J. 1992. Uwagi o handlu brązem. In S. Czopek (ed.), Ziemie polskie we wczesnej epoce żelaza i ich powiązania z innymi terenami. Rzeszów: Muzeum Okręgowe w Rzeszowie, 81–89.

De Graaf D. C., Alippi A. M., Brown M., Evans J. D., Feldlaufer M., Gregorc A., Hornitzky M., Pernal S. F., Schuch D. M., Titera D., Tomkies V. and Ritter W. 2006. Diagnosis of American foulbrood in honey bees: a synthesis and proposed analytical protocols. Letters in Applied Microbiology 43(6), 583–590.

Devault A. M., McLoughlin K., Jaing C., Gardner S., Porter T. M., Enk J. M., Thissen J., Allen J., Borucki M., DeWitte S. N., Dhody A. N. and Poinar H. N. 2014. Ancient pathogen DNA in archaeological samples detected with a Microbial Detection Array. Scientific Reports 4, 4245–4245.

Evershed R. P. 2008. Experimental Approaches to the Interpretation of Absorbed Organic Residues in Archaeological Ceramics. World Archaeology 40(1), 26–47 (http://www.jstor.org/stable/40025312, access: 24.10.2023).

Fernández P. L. 2012. Palaeopathology: The Study of Disease in the Past. Pathobiology 79(5), 221–227.

Gilliam M. 1985. Microbes from apiarian sources: Bacillus spp. in frass of the greater wax moth. Journal of Invertebrate Pathology 45(2), 218–224.

Grund B. S., Williams S. E. and Surovell T. A. 2014. Viable paleosol microorganisms, paleoclimatic reconstruction, and relative dating in archaeology: a test case from Hell Gap, Wyoming, USA. Journal of Archaeological Science 46, 217–228.

Heyrman J., Logan N. A., Rodríguez-Díaz M., Scheldeman P., Lebbe L., Swings J., Heyndrickx M. and De Vos P. 2005. Study of mural painting isolates, leading to the transfer of “Bacillus maroccanus” and “Bacillus carotarum” to Bacillus simplex, emended description of Bacillus simplex, re-examination of the strains previously attributed to “Bacillus macrolides” and description of Bacillus muralis sp. nov. International Journal of Systematic and Evolutionary Microbiology 55(1), 119–131.

Hofmann K. P. 2012. (review) Alexander Gramsch, Ritual und Kommunikation. Altersklassen und Geschlechterdifferenz im spätbronze- und früheisenzeitlichen Gräberfeld Cottbus Alvensleben-Kaserne (Brandenburg), 2010. Archäologische Informationen 35, 297–302.

Huerta-Cepas J., Serra F. and Bork P. 2016. ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data. Molecular Biology and Evolution 33(6), 1635–1638.

Johnston-Monje D. and Raizada M. N. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6), 1–22. DOI: 10.1371/journal.pone.0020396.

Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M. and Glöckner F. O. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1), 28.

Lindström A., Korpela S. and Fries I. 2008. The distribution of Paenibacillus larvae spores in adult bees and honey and larval mortality, following the addition of American foulbrood diseased brood or spore-contaminated honey in honey bee (Apis mellifera) colonies. Journal of Invertebrate Pathology 99(1), 82–86.

Lomstein B. A., Langerhuus A. T., D’Hondt S., Jørgensen B. B. and Spivack A. J. 2012. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484(7392), 101–104.

Malinowski T. 1985. Wielkopolska w otchłani wieków. Poznań: Wydawnictwo Poznańskie.

Margesin R., Siles J. A., Cajthaml T., Öhlinger B. and Kistler E. 2017. Microbiology Meets Archaeology: Soil Microbial Communities Reveal Different Human Activities at Archaic Monte Iato (Sixth Century BC). Microbial Ecology 73(4), 925–938.

Mayyas A., Douglas K., Hoffmann T., Thorenz U., Yaseen I. B. and Mohammed E. K. 2013. Organic residues preserved in archaeological ceramics from the early bronze age site of khirbet al-batrawy in north-central Jordan. Mediterranean Archaeology and Archaeometry 13(2), 189–206.

Mierzwiński A. 2012. Biesiady w rytuale pogrzebowym nadodrzańskiej strefy pól popielnicowych. Wrocław: Instytut Archeologii i Etnologii Polskiej Akademii Nauk.

Mitusov A. V., Mitusova O. E., Pustovoytov K., Lubos C. C.-M., Dreibrodt S. and Bork H.-R. 2009. Palaeoclimatic indicators in soils buried under archaeological monuments in the Eurasian steppe: a review. The Holocene 19(8), 1153–1160.

Mogielnicka-Urban M. 1992. Próba interpretacji naczyń nie zawierających kości z cmentarzyska kultury łużyckiej w Maciejowicach, woj. Siedlce. Przegląd Archeologiczny 39, 101–120.

Moodley Y., Linz B., Yamaoka Y., Windsor H. M., Breurec S., Wu J. Y., Maady A., Bernhöft, S., Thiberge J. M., Phuanukoonnon S., Jobb G., Siba P., Graham D. Y., Marshall B. J. and Achtman M. 2009. The peopling of the Pacific from a bacterial perspective. Science 323(5913), 527–530.

Nilsson M. and Renberg I. 1990. Viable endospores of Thermoactinomyces vulgaris in lake sediments as indicators of agricultural history. Applied and Environmental Microbiology 56(7), 2025–2028.

Onyenwoke R. U., Brill J. A., Farahi K. and Wiegel J. 2004. Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Archives of Microbiology 182(2–3), 182–192.

Rollo F. U., Ermini L., Luciani S., Marota I. and Olivieri C. 2006. The study of bacterial DNA in ancient human mummies. Journal of Anthropological Sciences 84, 53–64.

Rösch M. 1999. Evaluation of honey resideus from Iron Age hill-top sistes in south-western Germany: implications for local and regional land use and vegetation dynamics. Vegetation History and Archaeobotany 8, 105–112.

Sáez-Nieto J. A., Medina-Pascual M. J., Carrasco G., Garrido N., Fernandez-Torres M. A., Villalón P. and Valdezate S. 2017. Paenibacillus spp. isolated from human and environmental samples in Spain: detection of 11 new species. New Microbes and New Infections 19, 19–27.

Spyrou M. A., Bos K. I., Herbig A. and Krause J. 2019. Ancient pathogen genomics as an emerging tool for infectious disease research. Nature Reviews Genetics 20(6), 323–340.

Stantis C., Kinaston R. L., Richards M. P., Davidson J. M. and Buckley H. R. 2015. Assessing Human Diet and Movement in the Tongan Maritime Chiefdom Using Isotopic Analyses. PLoS One 10(3), 1–27. DOI: 10.1371/journal.pone.0123156.

Wunderlin T., Junier T., Roussel-Delif L., Jeanneret N. and Junier P. 2013. Stage 0 sporulation gene A as a molecular marker to study diversity of endospore-forming Firmicutes. Environmental Microbiology Reports 5(6), 911–924.

Wunderlin T., Junier T., Roussel-Delif L., Jeanneret N. and Junier P. 2014. Endospore-enriched sequencing approach reveals unprecedented diversity of Firmicutes in sediments. Environmental Microbiology Reports 6(6), 631–639.

Zink A. R., Sola C., Reischl U., Grabner W., Rastogi N., Wolf H. and Nerlich A. G. 2003. Characterization of Mycobacterium tuberculosis complex DNAs from Egyptian mummies by spoligotyping. Journal of Clinical Microbiology 41(1), 359-67. DOI: 10.1128/JCM.41.1.359-367.2003.

Opublikowane

2023-12-29

Jak cytować

Trybała-Zawiślak, K., Potocki, L., Czopek, S., & Ząbek, T. (2023). Bacterial Endospores as an Additional Source of Archaeological Knowledge in the Analysis of a Burial Cemetery of the Tarnobrzeg Lusatian Culture in Dębina (SE Poland). Ana­lecta Archa­eolo­gica Res­so­viensia, 18, 117–129. https://doi.org/10.15584/anarres.2023.18.8

Numer

Dział

Artykuły