The impact of agriculture in Visegrad countries on CO2 emissions using the FMOLS and DOLS methods in an empirical panel data study
DOI:
https://doi.org/10.15584/nsawg.2024.3.6Keywords:
agriculture, CO2 emissions, Visegrad Group, panel methods, energyAbstract
The primary aspiration of this paper is to learn about the effects of agricultural energy consumption, agriculture value added, agricultural land and fertiliser consumption on environmental pollution in Visegrad countries. The research employs panel data from long-run models FMOLS and DOLS, covering the period from 1995 to 2020. The study suggests that there is a positive and statistically significant correlation between CO2 emissions from agriculture in Central and Eastern European countries, and factors such as higher energy consumption, increased value from agricultural production, greater fertiliser consumption, and larger arable land areas. The FMOLS and DOLS models’ long-term coefficients suggest that energy consumption in agriculture and crop area are the main factors contributing to the increase in CO2 emissions from agriculture in the studied countries. The study recommends a sustainable energy transformation of agriculture by limiting the use of fossil fuels in agricultural production and reducing share of arable land.
References
Adedoyin, F.F., Alola, A.A., Bekun, F.V. (2020). The nexus of environmental sustainability and agro-economic performance of Sub-Saharan African countries. Heliyon, 6(9), e04878. DOI: 10.1016/j.heliyon.2020.e04878.
Adedoyin, F.F., Bein, M.A., Gyamfi, B.A., Bekun, F.V. (2021). Does agricultural development induce environmental pollution in E7? A myth or reality. Environmental Science and Pollution Research, 28(31), 41869–41880. DOI: 10.1007/s11356-021-13586-2.
Ali, A., Usman, M., Usman, O., Sarkodie, S.A. (2021). Modeling the Effects of Agricultural Innovation and Biocapacity on Carbon Dioxide Emissions in an Agrarian-Based Economy: Evidence From the Dynamic ARDL Simulations. Frontiers in Energy Research, 8, 1–16. DOI: 10.3389/fenrg.2020.592061.
Amann, T., Hartmann, J. (2018). Ideas and perspectives: Synergies from co-deployment of negative emission technologies [Preprint]. Earth System Science/Response to Global Change: Climate Change. DOI: 10.5194/bg-2018-500.
Appiah, K., Du, J., Poku, J. (2018). Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environmental Science and Pollution Research, 25(25), 24764–24777. DOI: 10.1007/s11356-018-2523-z.
Ben Jebli, M., Ben Youssef, S. (2017). The role of renewable energy and agriculture in reducing CO2 emissions: Evidence for North Africa countries. Ecological Indicators, 74, 295–301. DOI: 10.1016/j.ecolind.2016.11.032.
Bunz, M., Mücke, H.-G. (2017). Klimawandel – physische und psychische Folgen. Bundesgesundheitsblatt – Gesundheitsforschung – Gesundheitsschutz, 60(6), 632– 639. DOI: 10.1007/s00103-017-2548-3.
Caldwell, C.D., Smukler, S. (2020). Global Climate Change and Agriculture. In: C.D. Caldwell, S. Wang (eds.), Introduction to Agroecology (pp. 119–135). Singapore: Springer. DOI: 10.1007/978-981-15-8836-5_9.
Chandio, A.A., Akram, W., Ahmad, F., Ahmad, M. (2020). Dynamic relationship among agriculture-energy-forestry and carbon dioxide (CO2) emissions: Empirical evidence from China. Environmental Science and Pollution Research, 27(27), 34078–34089. DOI: 10.1007/s11356-020-09560-z.
Chiarella, C., Meyfroidt, P., Abeygunawardane, D., Conforti, P. (2023). Balancing the trade-offs between land productivity, labor productivity and labor intensity. Ambio, 52(10), 1618–1634. DOI: 10.1007/s13280-023-01887-4.
Cho, S.J., Ding, J., McCarl, B.A., Yu, C.-H., Cho, S.J., Ding, J., McCarl, B.A., Yu, C.-H. (2011). Economic Impacts of Climate Change on Agriculture: Adaptation and Vulnerability. In: J. Blanco, H. Kheradmand (eds.), Climate Change – Socioeconomic Effects (pp. 307–324). IntechOpen. DOI: 10.5772/24590.
Danilov-Danil’yan, V.I., Kattsov, V.M., Porfiriev, B.N. (2020). The Problem of Climate Change: The Field of Convergence and Interaction between Natural Sciences and the Sociohumanities. Herald of the Russian Academy of Sciences, 90(5), 577–587. DOI: 10.1134/S1019331620050123.
Dogan, E., Seker, F. (2016). Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy. Renewable Energy, 94, 429–439. DOI: 10.1016/j.renene.2016.03.078.
Doğan, H.G. (2018). Nexus Of Agriculture, Gdp, Population And Climate Change: Case Of Some Eurasian Countries And Turkey. Applied Ecology and Environmental Research, 16(5), 6963–6976. DOI: 10.15666/aeer/1605_69636976.
Doğan, N. (2019). The impact of agriculture on CO2 emissions in China. Panoeconomicus, 66(2), 257–271. DOI: 10.2298/PAN160504030D.
Dzikuć, M., Wyrobek, J., Popławski, Ł. (2021). Economic Determinants of Low-Carbon Development in the Visegrad Group Countries. Energies, 14(13), 3823. DOI: 10.3390/en14133823.
Fall, T., Heiden, K., Smyth, A.R., Brym, Z., Adamczyk, B. (2021). Greenhouse Gas Emissions from Subtropical Agriculture Fields Decrease Over Time. Experimental Results, 2, e1. DOI: 10.1017/exp.2020.48.
Flammini, A., Pan, X., Tubiello, F.N., Qiu, S.Y., Rocha Souza, L., Quadrelli, R., Bracco, S., Benoit, P., Sims, R. (2021). Emissions of greenhouse gases from energy use in agriculture, forestry and fisheries: 1970–2019, 14(2), 811–821. [Preprint]. Antroposphere – Energy and Emissions. DOI: 10.5194/essd-2021-262.
Gokmenoglu, K.K., Taspinar, N. (2018). Testing the agriculture-induced EKC hypothesis: The case of Pakistan. Environmental Science and Pollution Research, 25(23), 22829– 22841. DOI: 10.1007/s11356-018-2330-6.
Gostkowski, M., Rokicki, T., Ochnio, L., Koszela, G., Wojtczuk, K., Ratajczak, M., Szczepaniuk, H., Bórawski, P., Bełdycka-Bórawska, A. (2021). Clustering Analysis of Energy Consumption in the Countries of the Visegrad Group. Energies, 14(18), 5612. DOI: 10.3390/en14185612.
Granger, C.W.J. (1988). Some recent development in a concept of causality. Journal of Econometrics, 39(1), 199–211. DOI: 10.1016/0304-4076(88)90045-0.
Gurbuz, I.B., Nesirov, E., Ozkan, G. (2021). Does agricultural value-added induce environmental degradation? Evidence from Azerbaijan. Environmental Science and Pollution Research, 28(18), 23099–23112. DOI: 10.1007/s11356-020-12228-3.
Huan, Y., Hassan, M.S., Tahir, M.N., Mahmood, H., Al-Darwesh, H.R.I. (2022). The role of energy use in testing N – Shaped relation between industrial development and environmental quality for Chinese economy. Energy Strategy Reviews, 43, 100905. DOI: 10.1016/j.esr.2022.100905.
Im, K.S., Pesaran, M.H., Shin, Y. (2003). Testing for unit roots in heterogeneous panels. Journal of Econometrics, 115(1), 53–74. DOI: 10.1016/S0304-4076(03)00092-7.
Jaiswal, B., Agrawal, M. (2020). Carbon Footprints of Agriculture Sector. In: S.S. Muthu (ed.), Carbon Footprints: Case Studies from the Building, Household, and Agricultural Sectors (pp. 81–99). Sinagapore: Springer. DOI: 10.1007/978-981-13-7916-1_4.
Jones, G.V., Edwards, E.J., Bonada, M., Sadras, V.O., Krstic, M.P., Herderich, M.J. (2022). 17 – Climate change and its consequences for viticulture. In: A.G. Reynolds (ed.), Managing Wine Quality (Second Edition) (pp. 727–778). Duxford: Woodhead Publishing. DOI: 10.1016/B978-0-08-102067-8.00015-4.
Juodis, A., Karavias, Y., Sarafidis, V. (2021). A homogeneous approach to testing for Granger non-causality in heterogeneous panels. Empirical Economics, 60(1), 93–112. DOI: 10.1007/s00181-020-01970-9.
Kao, C. (1999). Spurious regression and residual-based tests for cointegration in panel data. Journal of Econometrics, 90(1), 1–44. DOI: 10.1016/S0304-4076(98)00023-2.
Khan, R. (2020). Agricultural production and CO2 emissions causes in the developing and developed countries: New insights from quantile regression and decomposition analysis (p. 2020.11.16.384370). bioRxiv (Preprint). DOI: 10.1101/2020.11.16.384370.
Khan, Z.A., Koondhar, M.A., Tiantong, M., Khan, A., Nurgazina, Z., Tianjun, L., Fengwang, M. (2022). Do chemical fertilizers, area under greenhouses, and renewable energies drive agricultural economic growth owing the targets of carbon neutrality in China? Energy Economics, 115, 106397. DOI: 10.1016/j.eneco.2022.106397.
Khurshid, N., Khurshid, J., Shakoor, U., Ali, K. (2022). Asymmetric effect of agriculture value added on CO2 emission: Does globalization and energy consumption matter for Pakistan. Frontiers in Energy Research, 10, 1–14. DOI: 10.3389/fenrg.2022.1053234.
Kochanek, E. (2021). The Energy Transition in the Visegrad Group Countries. Energies, 14(8), 2212. DOI: 10.3390/en14082212.
Koshta, N., Bashir, H.A., Samad, T.A. (2020). Foreign trade, financial development, agriculture, energy consumption and CO2 emission: Testing EKC among emerging economies. Indian Growth and Development Review, 14(1), 50–80. DOI: 10.1108/IGDR-10-2019-0117.
Li, J.H., Yang, Y.J., Li, B.W., Li, W.J., Wang, G., Knops, J.M.H. (2014). Effects of Nitrogen and Phosphorus Fertilization on Soil Carbon Fractions in Alpine Meadows on the Qinghai-Tibetan Plateau. PLOS ONE, 9(7), e103266. DOI: 10.1371/journal.pone.0103266.
Long, D.J., Tang, L. (2021). The impact of socio-economic institutional change on agricultural carbon dioxide emission reduction in China. PLOS ONE, 16(5), e0251816. DOI: 10.1371/journal.pone.0251816.
Majewski, S., Mentel, G., Dylewski, M., Salahodjaev, R. (2022). Renewable Energy, Agriculture and CO2 Emissions: Empirical Evidence From the Middle-Income Countries. Frontiers in Energy Research, 10, 1–10. DOI: 10.3389/fenrg.2022.921166.
Mielcarek-Bocheńska, P., Rzeźnik, W. (2021). Greenhouse Gas Emissions from Agriculture in EU Countries – State and Perspectives. Atmosphere, 12(11), 1396. DOI: 10.3390/atmos12111396.
Murad, W., Ratnatunga, J. (2013). Carbonomics of the Bangladesh agricultural output: Causality and long-run equilibrium. Management of Environmental Quality: An International Journal, 24(2), 256–271. DOI: 10.1108/14777831311303128.
Naseem, S., Guang Ji, T. (2021). A system-GMM approach to examine the renewable energy consumption, agriculture and economic growth’s impact on CO2 emission in the SAARC region. GeoJournal, 86(5), 2021–2033. DOI: 10.1007/s10708-019-10136-9.
Naseem, S., Guang Ji, T., Kashif, U. (2020). Asymmetrical ARDL correlation between fossil fuel energy, food security, and carbon emission: Providing fresh information from Pakistan. Environmental Science and Pollution Research, 27(25), 31369–31382. DOI: 10.1007/s11356-020-09346-3.
Nath, I.B. (2020). The Food Problem and the Aggregate Productivity Consequences of Climate Change, Working Paper 27297. National Bureau of Economic Research, 1–77. DOI: 10.3386/w27297.
Nguyen, C.P., Le, T.-H., Schinckus, C., Su, T.D. (2021). Determinants of agricultural emissions: Panel data evidence from a global sample. Environment and Development Economics, 26(2), 109–130. DOI: 10.1017/S1355770X20000315.
Nwaka, I.D., Nwogu, M.U., Uma, K.E., ke, G.N. (2020). Agricultural production and CO2 emissions from two sources in the ECOWAS region: New insights from quantile regression and decomposition analysis. Science of The Total Environment, 748, 141329. DOI: 10.1016/j.scitotenv.2020.141329.
Panchasara, H., Samrat, N.H., Islam, N. (2021). Greenhouse Gas Emissions Trends and Mitigation Measures in Australian Agriculture Sector – A Review. Agriculture, 11(2), 1–16. DOI: 10.3390/agriculture11020085.
Parajuli, R., Joshi, O., Maraseni, T. (2019). Incorporating Forests, Agriculture, and Energy Consumption in the Framework of the Environmental Kuznets Curve: A Dynamic Panel Data Approach. Sustainability, 11(9), 2688. DOI: 10.3390/su11092688.
Pedroni, P. (2001). Fully modified OLS for heterogeneous cointegrated panels. In: B.H. Baltagi, T.B. Fomby, R. Carter Hill (eds.), Nonstationary Panels, Panel Cointegration, and Dynamic Panels (pp. 93–130). Leeds: Emerald Group Publishing Limited. DOI: 10.1016/S0731-9053(00)15004-2.
Pedroni, P. (2004). Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application To The Ppp Hypothesis. Econometric Theory, 20(3), 597–625. DOI: 10.1017/S0266466604203073.
Prandecki, K., Sadowski, M. (2010). Międzynarodowa ewolucja ochrony środowiska. Warszawa: LAM – Wydawnictwo Akademii Finansów.
Prandecki, K., Wrzaszcz, W., Zieliński, M. (2020). Rolnictwo a klimat. Zmiana Klimatu – Skutki Dla Polskiego Społeczeństwa i Gospodarki. Retrieved from: https://publikacje.pan.pl/chapter/119782/rolnictwo-a-klimat-br (2023.09.23).
Qiao, H., Zheng, F., Jiang, H., Dong, K. (2019). The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Science of The Total Environment, 671, 722–731. DOI: 10.1016/j.scitotenv.2019.03.336.
Rahman, M.H., Majumder, S.C., Debbarman, S. (2020). Examine the Role of Agriculture to Mitigate the CO2 Emission in Bangladesh. Asian Journal of Agriculture and Rural Development, 10(1), 392–405. DOI: 10.18488/journal.1005/2020.10.1/1005.1.392.405.
Rehman, A., Alam, M.M., Alvarado, R., Işık, C., Ahmad, F., Cismas, L.M., Mungiu Pupazan, M.C. (2022). Carbonization and agricultural productivity in Bhutan: Investigating the impact of crops production, fertilizer usage, and employment on CO2 emissions. Journal of Cleaner Production, 375, 134178. DOI: 10.1016/j.jclepro.2022.134178.
Rehman, A., Ozturk, I., Zhang, D. (2019). The Causal Connection between CO2 Emissions and Agricultural Productivity in Pakistan: Empirical Evidence from an Autoregressive Distributed Lag Bounds Testing Approach. Applied Sciences, 9(8), 1–16. DOI: 10.3390/app9081692.
Saboori, B., Sulaiman, J. (2013). CO2 emissions, energy consumption and economic growth in Association of Southeast Asian Nations (ASEAN) countries: A cointegration approach. Energy, 55, 813–822. DOI: 10.1016/j.energy.2013.04.038.
Saidmamatov, O., Tetreault, N., Bekjanov, D., Khodjaniyazov, E., Ibadullaev, E., Sobirov, Y., Adrianto, L.R. (2023). The Nexus between Agriculture, Water, Energy and Environmental Degradation in Central Asia – Empirical Evidence Using Panel Data Models. Energies, 16(7), 3206. DOI: 10.3390/en16073206.
Selden, T.M., Song, D. (1994). Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions? Journal of Environmental Economics and Management, 27(2), 147–162. DOI: 10.1006/jeem.1994.1031.
Shahbaz, M., Sinha, A. (2019). Environmental Kuznets curve for CO2 emissions: A literature survey. Journal of Economic Studies, 46(1), 106–168. DOI:10.1108/JES-09-2017-0249.
Shakoor, A., Dar, A.A., Arif, M.S., Farooq, T.H., Yasmeen, T., Shahzad, S.M., Tufail, M.A., Ahmed, W., Albasher, G., Ashraf, M. (2022). Do soil conservation practices exceed their relevance as a countermeasure to greenhouse gases emissions and increase crop productivity in agriculture? Science of The Total Environment, 805, 150337. DOI: 10.1016/j.scitotenv.2021.150337.
Simionescu, M. (2021). Revised environmental Kuznets Curve in CEE countries. Evidence from panel threshold models for economic sectors. Environmental Science and Pollution Research, 28(43), 60881–60899. DOI: 10.1007/s11356-021-14905-3.
Tubiello, F.N., Conchedda, G., Wanner, N., Federici, S., Rossi, S., Grassi, G. (2021). Carbon emissions and removals from forests: New estimates, 1990–2020. Earth System Science Data, 13(4), 1681–1691. DOI: 10.5194/essd-13-1681-2021.
Tubiello, F.N., Salvatore, M., Rossi, S., Ferrara, A., Fitton, N., Smith, P. (2013). The FAOSTAT database of greenhouse gas emissions from agriculture. Environmental Research Letters, 8(1), 015009. DOI: 10.1088/1748-9326/8/1/015009.
Tucki, K., Krzywonos, M., Orynycz, O., Kupczyk, A., Bączyk, A., Wielewska, I. (2021). Analysis of the Possibility of Fulfilling the Paris Agreement by the Visegrad Group Countries. Sustainability, 13(16), 1–22. DOI: 10.3390/su13168826.
Wawrzyniak, D. (2020). CO2 Emissions in the Visegrad Group Countries and the European Union Climate Policy. Comparative Economic Research. Central and Eastern Europe, 23(1), 73–91. DOI: 10.18778/1508-2008.23.05.
Wrzaszcz, W. (2023). Zielona transformacja polityki rolnej w Unii Europejskiej. In: M. Burchard-Dziubińska, K. Prandecki (eds.), Zielone Finanse (pp. 81–112). Warszawa: Komitet Prognoz „Polska 2000 Plus” Prezydium PAN.
Wu, H., MacDonald, G.K., Galloway, J.N., Zhang, L., Gao, L., Yang, L., Yang, J., Li, X., Li, H., Yang, T. (2021). The influence of crop and chemical fertilizer combinations on greenhouse gas emissions: A partial life-cycle assessment of fertilizer production and use in China. Resources, Conservation and Recycling, 168, 105303. DOI: 10.1016/j.resconrec.2020.105303.
Yerli, C., Şahin, Ü., Çakmakcı, T., Tüfenkçi, Ş. (2019). Tarımsal Uygulamaların CO2 Salınımına Etkileri ve Azaltılmasının Yolları. Turkish Journal of Agriculture – Food Science and Technology, 7(9), 1446–1456. DOI: 10.24925/turjaf.v7i9.1446-1456.2750.
Zahoor, H.J. (2018). Agricultural Productivity and CO2 Emission in Pakistan: An Econometric Analysis. International Journal of Renewable Energy Research, 8(3), 1535–1543.
Zaman, M., Kleineidam, K., Bakken, L., Berendt, J., Bracken, C., Butterbach-Bahl, K., Cai, Z., Chang, S.X., Clough, T., Dawar, K., Ding, W.X., Dörsch, P., dos Reis Martins, M., Eckhardt, C., Fiedler, S., Frosch, T., Goopy, J., Görres, C.-M., Gupta, A., Müller, C. (2021). Climate-Smart Agriculture Practices for Mitigating Green-house Gas Emissions. In: M. Zaman, L. Heng, C. Müller (eds.), Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques: Applications of Nuclear Techniques for GHGs (pp. 303–328). Singapore: Springer International Publishing. DOI: 10.1007/978-3-030-55396-8_8.
Zhang, Q., Wu, J., Lei, Y., Yang, F., Zhang, D., Zhang, K., Zhang, Q., Cheng, X. (2018). Agricultural land use change impacts soil CO2 emission and its 13C-isotopic signature in central China. Soil and Tillage Research, 177, 105–112. DOI: 10.1016/j.still.2017.11.017.
Zwane, T.T., Udimal, T.B., Pakmoni, L. (2023). Examining the drivers of agricultural carbon emissions in Africa: An application of FMOLS and DOLS approaches. Environmental Science and Pollution Research, 30(19), 56542–56557. DOI: 10.1007/s11356-023-25173-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 University of Rzeszow
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.