Preliminary recommendations for European bilberry (Vaccinium Myrtillus L.) Harvesting as a tannin raw material in the context the needs and challenges of sustainable forest management
DOI:
https://doi.org/10.15584/pjsd.2025.29.2.2Keywords:
non-wood forest products, bilberry, herbal medicinal products, European Pharmacopoeia, tannins, sustainable development, forest utilisationAbstract
The forest environment is a well-known and valuable source of non-wood forest products, including mushrooms, fruits, and medicinal plants. These raw materials are widely harvested, and can be considered as a crucial element of regional development. When collecting medicinal plants, it is extremely important to meet strictly defined pharmacopoeial quality requirements, and, at same time, collecting must be carried out in accordance with the principles of sustainable forest management. This is possible within the framework of formalised cooperation between forest managers and pharmaceutical companies. In Poland, one of the most important forest floor resources is the bilberry (Vaccinium myrtillus L.). The fruit of this plant, in addition to culinary value, is also a herbal raw material. This study aimed to determine the tannin content in bilberry fruit obtained from four different forest site types where this species occurs commonly or frequently: fresh coniferous forest (Bśw), fresh mixed coniferous forest (BMśw), boggy mixed coniferous forest (BMb), and fresh mixed broadleaved forest (LMśw). The research material was collected from the Szczebra Forest District (northeastern Poland). Tannin content was assessed according to the analytical methodology recommended by the current “European Pharmacopoeia 11”. The results were referred to the pharmacopoeial monograph "Bilberry fruit, dried". Furthermore, considering the use of dried bilberry fruit not only in the pharmaceutical but also in the food industry, the anthocyanin content has been assessed. For the analysed variables, statistically significant differences in average values were found depending on the forest site type. The highest tannin content was found in the fruits from boggy mixed coniferous forest (1.0%), lower tannin content was detected in the fruits from fresh coniferous forest and fresh mixed coniferous forest (0.8%), and the lowest turned out to be characteristic in the fruits from fresh mixed broadleaved forest (0.7%). Meanwhile anthocyanin content was as follows: fresh mixed broadleaved forest 1.48%, fresh coniferous forest dominated 1.47% boggy mixed coniferous forest 1.20%, and fresh mixed coniferous forest 0.83%. Taking into account the results of our preliminary research and, at the same time, the percentage share of the considered forest site types in Poland we would like to recommend a fresh mixed coniferous forest as the most suitable habitat for bilberry fruit harvesting for the needs of pharmaceutical industry. In turn, the collection of raw material richest in anthocyanins can be carried out in fresh coniferous forest and fresh mixed broadleaved forest, and these forest site types should be specified as optimal when food companies plan to obtain bilberry fruit for food production.
Downloads
References
Aerts R., Chapin F. S. 1999. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. In Advances in ecological research. Vol. 30. 1-67. Academic Press.
Åkerström A., Jaakola L., Bång U., Jäderlund A. 2010. Effects of latitude-related factors and geographical origin on anthocyanidin concentrations in fruits of Vaccinium myrtillus L. (bilberries). Journal of Agricultural and Food Chemistry. 58 (22). 11939-11945.
Amarowicz R. 2007. Tannins: the new natural antioxidants? European Journal of Lipid Science and Technology. 109 (6). 549-551.
Baraniak J., Kania M. 2015. Borówka, winorośl i granatowiec – znane rośliny o aktywności przeciwutleniającej. Postępy Fitoterapii. 16 (1). 50-55.
Barbehenn R. V., Constabel C. P. 2011. Tannins in plant–herbivore interactions. Phytochemistry. 72 (13). 1551-1565.
Bilek M. 2023. Roślinne produkty lecznicze. Aptekarz Polski. 203 (7). 39-50.
Bilek M., Dudek T., Czerniakowski Z., Staniszewski P. 2020. Owoc borówki czernicy (Vaccinium myrtillus L.) jako farmakopealny surowiec antocyjanowy. Sylwan 164 (9). 783-792.
Bilek M., Ekiert R., Staniszewski P. 2019. Środowisko leśne źródłem surowców leczniczych. Las Polski. 20. 30-31.
Bilek M., Staniszewski P. 2020. Jak pozyskiwać leśne surowce niedrzewne? Zalecenia w świetle „Zasad użytkowania lasu” oraz norm i wytycznych przemysłu spożywczego i farmaceutycznego. Las Polski. 12. 26-29.
Bilek M., Staniszewski P., Oktaba J., Kopeć S., Czerniakowski Z. 2025. Roślinne produkty lecznicze w koncepcji zrównoważonego rozwoju gospodarki leśnej. Polish Journal for Sustainable Development. 29 (1). 7-18. DOI: 10.15584/pjsd.2025.29.1.1
Bryant J. P. Chapin III F. S., Klein, D. R. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos. 357-368.
Chen Y., Chu C., H, F., Fang S. 2022. A mechanistic model for nitrogen-limited plant growth. Annals of Botany. 129 (5). 583–592.
Communication from the Commission to the European Parliament, The Council, The European Economic and So-cial Committee and the Committee of the Regions 2023.a. A Green Deal Industrial Plan for the Net-Zero Age. COM/2023/62 final. [Downloaded from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52023DC0062].
Communication from the Commission to the European Parliament, The Council, The European Economic and So-cial Committee and the Committee of the Regions 2023.b. A long-term Vision for the EU’s Rural Areas - Towards stronger, connected, resilient and prosperous rural areas by 2040 COM/2021/345 final. [Downloaded from: https://eur-lex.europa.eu/legal-content/EN/TXT /?uri=CELEX%3A52021DC0345].
Dieta roślinna. [dok. elektr.: https://ncez.pzh.gov.pl/wp-content/uploads /2024/06/zalecenia_dietetycy_dieta-roslinna.pdf, data wejścia 10.12.2025].
Drozd J., Anuszewska E. 2013. Czarna jagoda – perspektywy nowych zastosowań w profilaktyce i wspomaganiu leczenia chorób cywilizacyjnych. Przegląd Medyczny Uniwersytetu Rzeszowskiego i Narodowego Instytutu Leków w Warszawie. 2. 226-235.
Ekiert R., Bilek M., Staniszewski P. 2019. Na czym polega współpraca z firmą zielarską? Las Polski. 22. 20-21.
Suplement 10.5. European Pharmacopoeia 2020. Tenth edition. Council of Europe, European Directorate for the Quality of Medicines and Healthcare, Strasbourg.
European Pharmacopoeia 2022. Eleventhth edition. Council of Europe, European Directorate for the Quality of Medicines and Healthcare, Strasbourg.
Głowacki S. 1999. Przemysłowe wykorzystanie leśnych surowców ubocznych. Przegląd Techniki Rolniczej i Leśnej. 5. 17-19.
Guideline on good agricultural and collection practice (GACP) for starting materials of herbal origin. 2006. [dok. elektr.: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-agricultural-collection-practice-gacp-starting-materials-herbal-origin-revision-1_en.pdf, data wejścia 10.12.2025].
Herms D. A., Mattson W. J. 1992. The dilemma of plants: to grow or defend. The Quarterly Review of Biology. 67 (3). 283-335.
Hirose T., Werger, M. J. A. 1987. Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia. 72 (4). 520-526.
Jaakola L., Määttä K., Pirttilä A. M., Törrönen R., Kärenlampi S., Hohtola A. 2002. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology. 130 (2). 729-739.
Jassey V. E., Signarbieux C., Hättenschwiler S., Bragazza L., Buttler A., Delarue F., Robroek B. J. 2015. An unexpected role for mixotrophs in the response of peatland carbon cycling to climate warming. Scientific Reports. 5 (1). 16931.
Karban R., Baldwin I. T. 2007. Induced responses to herbivory. University of Chicago Press.
Karppinen K., Zoratti L., Nguyenquynh N., Häggman H., Jaakola L. 2016. On the developmental and environmental regulation of secondary metabolism in Vaccinium spp. berries. Frontiers in Plant Science. 7. 655.
Koskimäki J. J., Hokkanen J., Jaakola L., Suorsa M., Tolonen A., Mattila S., ... Hohtola A. 2009. Flavonoid biosynthesis and degradation play a role in early defence responses of bilberry (Vaccinium myrtillus) against biotic stress. European Journal of Plant Pathology. 125 (4). 629-640.
Krajowa norma PEFC. PEFC PLver2:2024. Luty 2024. Zrównoważona gospodarka leśna – wymagania. [dok. elektr.: https://cdn.pefc.org/pefc.pl/media/2025-06/822902b8-ffb1-47be-9650-ea1144e75546/bcf9c980-3ca2-5cc4-a3f0-b7ea56f38998.pdf]
Kutner et. al. 2005. Applied Linear Statistical Models. McGraw-Hill.
Li X., Ren Q., Zhao W., Liao C., Wang Q., Ding T., Wang M. 2023. Interaction between UV-B and plant anthocyanins. Functional Plant Biology. 50 (8). 599-611.
Majasalmi T., Rautiainen M. 2020. The impact of tree canopy structure on understory variation in a boreal forest. Forest Ecology and Management. 466. 118100.
Manninen O. H., Martz,F., Sorvari J., Merilä P. 2025. Fruit quality of bilberry (Vaccinium myrtillus L.) in boreal forests: Effects of forest stand, understorey, and soil characteristics. Forest Ecology and Management. 596. 123077.
Narvekar A. S., Tharayil N. 2021. Nitrogen fertilization influences the quantity, composition, and tissue association of foliar phenolics in strawberries. Frontiers in Plant Science. 12. 613839.
Nguyen N. 2024. Towards a comprehensive understanding of the fruit development and ripening process of wild bilberry (Vaccinium myrtillus L.).
Nowacka W. Ł., Staniszewski P. 2017. Handel przydrożny surowcami ubocznymi pochodzącymi z lasu – zagrożenia dla sprzedawców i kupujących. [w]: Ergonomia w produkcji, przetwarzaniu i dystrybucji surowców biologicznych. Wydawnictwo Politechniki Krakowskiej. Kraków 2017.
Obeso J. R. 2002. The costs of reproduction in plants. New Phytologist. 155 (3). 321-348.
Pan J., Sharif R., Xu X., Chen X. 2021. Mechanisms of waterlogging tolerance in plants: Research progress and prospects. Frontiers in Plant Science. 11. 627331.
Pires, T. C., Caleja, C., Santos-Buelga, C., Barros, L., & Ferreira, I. C. 2020. Vaccinium myrtillus L. fruits as a novel source of phenolic compounds with health benefits and industrial applications—a review. Current Pharmaceutical Design. 26 (16). 1917-1928.
Report on Salix. 2017.[various species including S. purpurea L., S. daphnoides Vill., S. fragilis L.], cortex. [dok. elektr.: https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-salix-various-species-including-s-purpurea-l-s-daphnoides-vill-s-fragilis-l-cortex_en.pdf, data wejścia 10.12.2025].
Reganold, J. P., Andrews, P. K., Reeve, J. R., Carpenter-Boggs, L., Schadt, C. W., Alldredge, J. R., ... & Zhou, J. 2010. Fruit and soil quality of organic and conventional strawberry agroecosystems. PLOS One. 5 (9). e12346.
Rejestr produktów leczniczych. [dok. elektr.: https://www.gov.pl/web/urpl/rejestr-produktow-leczniczych3, data wejścia 10.12.2025].
Riihinen, K., Jaakola, L., Kärenlampi, S., & Hohtola, A. 2008. Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and 'Northblue' blueberry (Vaccinium corymbosum × V. angustifolium). Food Chemistry. 110 (1). 156-160.
Rosłon W., Osińska E., Pióro-Jabrucka E., Grabowska A. 2011. Morphological and chemical variability of wild populations of bilberry (Vaccinium myrtillus L.). Polish Journal of Environmental Studies. 20 (1). 237-243.
Routray W., Orsat V. 2011. Blueberries and their anthocyanins: factors affecting biosynthesis and properties. Comprehensive Reviews in Food Science and Food Safety. 10 (6). 303-320.
Salmon V. G., Brice D. J., Bridgham S., Childs J., Graham J., Griffiths N. A., Hanson P. J. 2021. Nitrogen and phosphorus cycling in an ombrotrophic peatland: a benchmark for assessing change. Plant and Soil. 466 (1). 649-674.
Scalbert A. 1991. Antimicrobial properties of tannins. Phytochemistry. 30 (12) 3875-3883.
Schluter U. 1999. Long-term anoxia tolerance in leaves of three wetland species (Acorus calamus L., Iris pseudacorus L., Vaccinium macrocarpon Ait.). University of St. Andrews.
Schofield P., Mbugua D. M., Pell A. N. 2001. Analysis of condensed tannins: a review. Animal Feed Science and Technology. 91 (1–2). 21-40.
Siedliskowe podstawy hodowli lasu. 2024. Załącznik do Zasad hodowli lasu. Ośrodek Rozwojowo-Wdrożeniowy Lasów Państwowych w Bedoniu.
Silfverberg K., Moilanen M. 2008. Long-term nutrient status of PK fertilized Scots pine stands on drained peatlands in North-Central Finland. Suo. 59 (3). 71-88.
Słowińska S., Słowiński M., Marcisz K., Lamentowicz M. 2022. Long-term microclimate study of a peatland in Central Europe to understand microrefugia. International Journal of Biometeorology. 66 (4). 817-832.
Staniszewski P. 2018. Perspektywy niedrzewnego użytkowania lasu. Postępy Techniki w Leśnictwie. 143. 7-18.
Staniszewski P. 2010a. Pozyskiwanie leśnych roślin leczniczych. Panacea. 30(1). 16-17.
Staniszewski P. 2010b. Pozyskiwanie leśnych roślin leczniczych. Panacea. 31(2). 22-23.
Staniszewski P., Kopeć S., Woźnicka M., Janeczko E., Bilek M. 2019. The forest that heals – forest environment as a source of herbal medicinal raw materials. Public recreation and landscape protection – with sense hand in hand. Conference proceeding. May 13-15. 2019. Křtiny. [w] Jitka Fialová (red.). ISBN 978-80-7509-659-3. Mendel University in Brno 2019. 393-298.
StatSoft Inc. 2013. STATISTICA (data analysis software system). version 13. www.statsoft.com.
Szafer W., Zarzycki K. 1977. Szata roślinna Polski. T. I–II. Państwowe Wydawnictwo Naukowe PWN. Warszawa 1977.
Szajdek A., Borowska J. 2004. Właściwości przeciwutleniające żywności pochodzenia roślinnego. Żywność. Nauka Technologia Jakość. 41 (4). 5-28.
Uleberg E., Rohloff J., Jaakola L., Trôst K., Junttila O., Häggman H., Martinussen I. 2012. Effects of temperature and photoperiod on yield and chemical composition of northern and southern clones of bilberry (Vaccinium myrtillus L.). Journal of Agricultural and Food Chemistry. 60 (42). 10406-10414.
Ustawa o lasach. Pub. L. No. Dz.U. z 2023 r. poz. 1356 (1991).
Vaneková Z., Vanek M., Škvarenina J., Nagy M. 2020. The influence of local habitat and microclimate on the levels of secondary metabolites in Slovak bilberry (Vaccinium myrtillus L.) fruits. Plants. 9 (4). 436.
Wawrzyniak A., Krotki M., Stoparczyk B. 2011. Właściwości antyoksydacyjne owoców i warzyw. Medycyna Rodzinna. 14 (1). 19-23.
Zalega J., Szostak−Węgierek D. 2013. Żywienie w profilaktyce nowotworów. Część I. Polifenole roślinne, karotenoidy, błonnik pokarmowy. Problemy Higieny i Epidemiologii. 94 (1). 41-49.
Zaleski J. 2017. Priorytety polityki leśnej Ministerialnego Procesu Ochrony Lasów w Europie. Sylwan. 161 (2). 124-130.
Zasady użytkowania lasu. Pub. L. No. Załącznik nr 1 do Zarządzenia DGLP nr 66 z dnia 7 listopada 2019 r. Państwowe Gospodarstwo Leśne.
Zhang X., Li S., An X., Song Z., Zhu Y., Tan Y., Wang D. 2023. Effects of nitrogen, phosphorus and potassium formula fertilization on the yield and berry quality of blueberry. PLOS One. 18 (3). e0283137.
Zoratti L., Jaakola L., Häggman H., Giongo L. 2015. Modification of sunlight radiation through colored photo-selective nets affects anthocyanin profile in Vaccinium spp. berries. PLOS One. 10 (8). e0135935.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Polish Journal for Sustainable Development

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.