Using Training Curriculum with Deep Reinforcement Learning. On the Importance of Starting Small

Authors

  • MICHAŁ KOZIARSKI Magister inżynier, Katedra Systemów i Sieci Komputerowych, Wydział Elektroniki, Politechnika Wrocławska, Polska
  • KRZYSZTOF KWATER Katedra Systemów i Sieci Komputerowych, Wydział Elektroniki, Politechnika Wrocławska, Polska
  • MICHAŁ WOŹNIAK Profesor doktor habilitowany inżynier, Katedra Systemów i Sieci Komputerowych, Wydział Elektroniki, Politechnika Wrocławska, Polska

DOI:

https://doi.org/10.15584/eti.2018.2.30

Keywords:

deep reinforcement learning, transfer learning, lifelong learning,, curriculum learning

Abstract

Reinforcement learning algorithms are being used to solve problems with ever-increasing level of complexity. As a consequence, training process becomes harder and more computationally demanding. Using transfer learning can partially elevate this issue by taking advantage of previ-ously acquired knowledge. In this paper we propose a novel test environment and experimentally evaluate impact of using curriculum with deep Q-learning algorithm.

Published

2018-06-30

How to Cite

KOZIARSKI, M., KWATER, K., & WOŹNIAK, M. (2018). Using Training Curriculum with Deep Reinforcement Learning. On the Importance of Starting Small. Journal of Education, Technology and Computer Science, 24(2), 220–226. https://doi.org/10.15584/eti.2018.2.30

Issue

Section

SELECTED PROBLEMS OF ADULT EDUCATION